R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)
B.Tech. I Year I Semester Supplementary Examinations August-2025
ENGINEERING PHYSICS

		(Common to ECE, CSE, EEE, CSIT)			
T	ime	: 3 Hours PART-A	Max. I	Marks	: 70
		(Answer all the Questions $10 \times 2 = 20$ Marks)			
1	a	Define Interference.	CO	1 L1	2M
1	a b	Define Diffraction Grating.	CO		2M
	c	Define lattice parameter.	CO		2M
	d	What is (i) Unit cell (ii) Basis	CO		2M
		Define dielectric polarization.	CO		
	e f	What is hysteresis?	CO ₂		2M
		What are matter waves.			2M
	g		CO:		2M
	h :	Define mean free path. Write any two difference between Intrinsic and Entrinsic acroises ductors	CO		2M
	i	Write any two difference between Intrinsic and Extrinsic semiconductors. Define Hall effect.	CO		2M
	j		CO	6 L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	State and explain principle of superposition.	CO	1 L2	4M
	b	Discuss the theory of interference of light due to thin films by reflection with	1 CO 1	1 L2	6M
		suitable ray diagram.			
		OR			
3	a	Explain the production of plane polarized light using Nicol Prism.	CO	1 L2	6 M
	b	Describe the propagation of polarized light in Quarter –Wave plate.	CO	1 L3	4M
		UNIT-II			
4		Show that Face centered cubic crystal structure has more closely packed	l CO2	2 L3	10M
4	a	structure than SC and BCC.			
		OR			
5	a	Explain how crystal structure determined by Powder X-Ray diffraction	CO2	2 L2	7M
		method.			
	b	What are the advantages of Powder X-Ray diffraction method?	CO2	2 L1	3M

UNIT-III

6	a	Deduce an expression for Lorentz field relating to Dielectric material.	CO3	L4	8M
U	b	Write the causes for Dielectric loss.	CO3	L4	2M
	D	OR		1	2111
	a	Distinguish between Soft and Hard magnetic material.	CO4	L2	8M
7		A paramagnetic material has 1028 atoms per m ³ . Its susceptibility at 350 K is	CO4	L3	2M
	b	2.8×10^{-4} . Calculate the susceptibility at 300 K.			
		UNIT-IV			
8	a	Derive Schrödinger's time dependent wave equation.	CO5	L3	7 M
	b	Explain the physical significance of wave function.	CO5	L2	3M
		OR			
9	a	What are the advantages of quantum free electron theory over classical free	CO5	L1	4M
		electron theory?			
	b	Derive an expression for electrical conductivity in a metal by quantum free	CO5	L3	6M
		electron theory.			
		UNIT-V			
10	a	Explain the formation of n-type semiconductors with banddiagram	CO6	L2	7M
	b	In an Intrinsic semiconductor, the energy gap is 1.2 eV. Calculate the ratio	CO6	L3	3M
		between conductivity at 600K and at 300K.			
		OR			
11	a	Explain the formation of energy bands in solids.	CO6	L2	4 M
	b	Classify the solids into conductor, semiconductor & insulators based on band	CO6	L2	6 M
		theory of solids.			

*** END ***

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 COMMUNICATIVE ENGLISH

(Common to CE, MECH, CSM, CIC, CAD, CCC & CAI)

	_	(Common to CE, MECH, CSM, CIC, CAD, CCC & CAI)		_	
Time	: 3		ax. Mar	ks: 7	0
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)	~~.		
1	_	, 1	CO1	L2	2M
	b	What is the affix of —independent?	CO1	L1	2M
	c	Write about the structure of a paragraph.	CO ₂	L2	2M
	d	Frame examples of your own for the following.	CO ₂	L2	2M
		i) Homophones ii) Homonyms			
	e	Explain the general strategies of Reading Comprehension.	CO ₃	L2	2M
	f	Write any two compound words.	CO ₃	L1	2M
	g	What are the main parts of a formal letter?	CO5	L1	2M
	h	Change the following sentences from active voice to passive voice.	CO5	L1	2M
		i. Ram played hockey.			
		ii. Children like sweets.			
	i	Write any two factors for effective reading.	CO ₆	L2	2M
	j	Write about present tense with suitable examples.	CO6	L2	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
2	a	Explain the central theme of the essay —The Gift of the Magil	CO1	L1	5M
	b	Describe Mechanics of Writing.	CO1	L2	5M
		OR			
3	a	Use the appropriate punctuation marks for the following sentences.	CO1	L1	5M
		i. john said to Him i am not happy now			
		ii. Do you recall my name my address my job my passion			
		iii. You are the right person for the job arent you			
		iv. In the words of Murphys Law Anything that can go wrong will go			
		wrong			
		v. A textbook can be a wall between teacher and class			
	b	Write any five capitalization rules with examples.	CO ₁	L2	5M
		UNIT-II			
4	a	Write a brief note on —The Brook by Alfred Lord Tennyson.	CO2	L2	5M
	b	Fill in the blanks with suitable articles.	CO2	L1	5M
		i. He has one rupee note in pocket.			
		ii. Varanasi is holy city.			
		iii. John is European.			
		iv. She is honest woman.			
V		v. Honesty is best policy.			
		OR			

5	a	Define homograph. Mention five meaningful sentences by using homograph.	CO2	L2	5M
	h	Fill in the blanks with suitable Cohesive Devices.	CO2	L1	5M
	U	(while, besides, before, and, though, whereas)	002	LI	SIVI
		i he worked hard, he failed.			
		ii. Raju celebrated his birthday on 10th of December Mohan			
		celebrated his birthday on 12th of December.			
		iii he is an English teacher, he can speak Telugu.			
		iv he was going to market, he met his old friend.			
		v. He is planning to meet the minister the chief secretary.			
		UNIT-III			
6	a	What are the DOs and Don'ts of paraphrasing and classify it?	CO3	L1	5M
	b	Describe the types of compound words.	CO4	L2	5M
		OR			
7	a	What are the significant achievements of Elon Musk?	CO ₄	L1	5M
	b	Explain any five rules of sub-verb agreement with examples.	CO ₄	L2	5M
		UNIT-IV			
8	a	Describe a couple of the peace toys' that Harvey brings for Eric and	CO ₅	L2	5M
		Bertie. What do these toys represent?			
	b	Write a Resume to apply for the job you dream of today.	CO ₅	L2	5M
		OR			
9	a	Write a few examples of jargon as a barrier to communication.	CO ₅	L2	5M
	b	Write a letter to your friend about your visit with your classmates to	CO ₅	L2	5M
		Satish Dhawan Space Centre (SDSC), Sriharikota, A.P.			
		UNIT-V			
10	a	What are the characteristics of an essay?	CO ₆	L1	5M
	b	Write the strategies of effective reading.	CO6	L2	5M
		OR			
11	a	What are Technical Jargons? Illustrate them with suitable examples.	CO6	L2	5M
	b	Write an essay on 'Wonders of Science'.	CO6	L2	5M
		*** END ***			

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 LINEAR ALGEBRA & CALCULUS

(Common to All)

Time: 3 Hours

Т_А

PART-A

(Answer all the Questions $10 \times 2 = 20$ Marks)

a Solve by Gauss-Seidel method
$$x - 2y = -3$$
; $2x + 25y = 15$.

CO1 L3 2M

CO1 L1 2M

Max. Marks: 70

Find the Eigne values of the matrix
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 2 & 5 \\ 0 & 0 & 3 \end{bmatrix}$$

CO2 L3 2M

CO₂ L₁ 2M

CO3 L1 2M

CO3 L1 2M

CO5 L1 2M

h If
$$x = u(1 - v)$$
; $y = uv$ then prove that $J\left(\frac{x,y}{u,v}\right) = u$

CO5 L2 2M

i Find the area enclosed by the parabolas
$$x^2 = y$$
 and $y^2 = x$.

CO6 L1 2M

j Evaluate
$$I = \int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$$

CO6 L5 2M

PART-B

(Answer all Five Units $5 \times 10 = 50$ Marks)

UNIT-I

2 a Find whether the following equations are consistent if so solve them

CO1 L3

x + y + 2z = 4; 2x - y + 3z = 9; 3x - y - z = 2.

CO1 L3 5M

5M

Beduce the matrix $A = \begin{bmatrix} -2 & -1 & -3 & -1 \\ 1 & 2 & 3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ into Echelon form and

find its rank?

OR

Show that the only real number λ for which the system x + 2y + 3z = C λx ; $3x + y + 2z = \lambda y$; $2x + 3y + z = \lambda z$ has non-zero solution is 6 and also solve them when $\lambda = 6$.

CO1 L2 10M

UNIT-II

4 Find the Eigen values and corresponding Eigen vectors of the matrix CO2 L3 10M

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}.$$

- 5 a Identify the nature of the Quadratic form $-3x_1^2 3x_2^2 3x_3^2 2x_1x_2 -$ CO2 L2 5M $2x_1x_3 + 2x_2x_3$.
 - b Determine the Eigen values of A^{-1} where $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ CO2 L3 5M

UNIT-III

- 6 a Verify Cauchy's Mean value theorem for $f(x) = x^3$ and $g(x) = x^2$ in CO3 L2 5M [1,2]
 - **b** Expand sinx in powers of $(x \frac{\pi}{2})$ up to the term containing $(x \frac{\pi}{2})^4$ CO4 L2 5M assigning Taylor's series.

OR

- 7 a Verify Rolle's theorem for the function $f(x) = x(x+3)e^{\frac{-x}{2}}$ in [-3,0] CO3 L2 6M
 - b Obtain the Maclaurin's series expression of the following functions: CO4 L2 4M
 - i) e^x ii) cosx iii) sinx

UNIT-IV

8 Expand $x^2y + 3y - 2$ in powers of (x - 2) and (y + 2) up to the term CO5 L2 10M of 3rd degree.

OR

- 9 a Examine the function for extreme value $f(x,y) = x^4 + y^4 2x^2 +$ CO5 L4 5M $4xy 2y^2$; (x > 0, y > 0).
 - **b** Find the minimum value of $x^2 + y^2 + z^2$ given x + y + z = 3a. CO5 L1 5M

10 a Calculate the volume of the solid bounded by the planes x = 0, y = 0, CO6 L1 5M x + y + z = a and z = 0.

b Evaluate
$$\int_{-1}^{1} \int_{0}^{z} \int_{y-z}^{x+z} (x+y+z) dx dy dz$$
 CO6 L5 5M

OR

- 11 a Evaluate the triple integral $\iiint xy^2zdxdydz$ taken through the positive CO6 L5 5M octant of the sphere $x^2 + y^2 + z^2 = a^2$.
 - **b** By changing order of integration, evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$ CO6 L3 5M

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 ENGINEERING CHEMISTRY

(Common to CE & ME)

(Common to CE & ME)							
Time	e: 3	B Hours PART-A	Max. I	Mark	s: 70		
_		(Answer all the Questions 10×2=20 Marks)	~~1				
1	a	What are scales and sludges?	CO1	L1	2M		
	b	Define soft water and hard water.	CO1	L1	2M		
	c	What is electroplating?	CO ₂	L1	2M		
	d	Differentiate dry corrosion and wet corrosion.	CO ₂	L2	2M		
	e	How to prepare Nylon-6,6 polymer?	CO ₃	L1	2M		
	f	Define cetane number.	CO ₄	L1	2M		
	g	What is saponification?	CO ₅	L1	2M		
	h	Define refractories.	CO ₅	L1	2M		
	i	What are nanomaterials?	CO6	L1	2M		
	j	Define stabilizing agent.	CO ₆	L1	2M		
		PART-B					
		(Answer all Five Units 5×10=50 Marks)					
		UNIT-I					
2		Discuss briefly about the priming and foaming?	CO ₁	L2	5M		
	b	Explain about desalination of brackish water by Reverse Osmosis.	CO ₁	L2	5M		
		OR					
3		Explain with a neat sketch the various steps involved in Industrial Water	CO1	L2	10M		
		Treatment.					
		UNIT-II					
4	a	Discuss in detail about sacrificial anodic protection.	CO ₂	L2	5M		
	b	Explain the process of Galvanic corrosion.	CO ₂	L2	5M		
		OR					
5	a	Describe the working principle of Zinc-air battery.	CO ₂	L2	5M		
	b	Explain electroplating of Nickel and Copper.	CO ₂	L2	5M		
		UNIT-III					
6	a	Explain the mechanism of cationic addition polymerization.	CO3	L2	5M		
	b	How to prepare Buna-S rubber? Mention its applications.	CO ₃	L2	5M		
		OR					
7	a	Explain the Proximate analysis of coal with its significance.	CO ₄	L2	5M		
	b	What is significance of the Fuels for IC Engines?	CO ₄	L1	5M		
		UNIT-IV					
8	a	Explain factors affecting the refractory materials.	CO5	L2	5M		
Ŭ		Discuss the properties of composite materials.	CO5	L2	5M		
	~	OR			0111		
9		Explain in detailed about manufacture of Portland Cement.	CO5	L2	10M		
10		UNIT-V	CO(т 2	ENK		
10		Explain about the stabilization of colloids by Solid-Liquid Interface.	CO6	L2	5M		
	b	Discuss the synthesis of colloids by Bragg's method.	CO6	L2	5M		
44		OR	000	т 4	1034		
11		Summarize the applications of nanomaterials.	CO6	L2	10M		
		*** END ***					

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 **CHEMISTRY**

		CHEMISTRY			
		(Common to CSM, CIC, CAD, CCC & CAI)	35		
Tim	e: 3	B Hours	Max. I	Mark	s: 70
		PART-A			
		(Answer all the Questions $10 \times 2 = 20$ Marks)	001	. .	07.5
1	a	Write Schrodinger wave equation.	CO1	L1	2M
	b	What is HOMO and LUMO.	CO ₁	L1	2M
	c	Define Super capacitor.	CO ₂	L1	2M
	d	Define Intrinsic and Extrinsic Semiconductor.	CO ₂	L1	2M
	e	What is secondary battery.	CO ₃	L1	2M
	f	Define Oxidation and Reduction.	CO ₃	L1	2M
	g	What is Polymer.	CO ₅	L1	2M
	h	What is Biodegradable polymer.	CO ₅	L1	2M
	i	Define Electromagnetic radiation.	CO ₆	L1	2M
	:	Define Chromatography.	CO6	L1	2M
	J	PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-I			
			001	τ 2	1034
2		Calculate the bond order of F2 & NO molecule and explain the magnetic	COI	L3	10M
		properties based on MOT theory.			
		OR	CO1	т 2	en a
3	a	Sketch the molecular orbital diagram for Oxygen (O2). Explain its bond order	CO ₁	L3	5M
		and magnetic property based on MOT theory.	CO1	L3	5M
	b	Explain π - molecular orbital of 1, 3- Butadiene with a neat sketch.	COI	LS	SIVI
		UNIT-II			
4	a	Draw the band diagrams for conductors, semi-conductors and Insulators.	CO ₂	L2	5M
	b	Write a note on applications of fullerenes.	CO ₂	L1	5M
		OR			
5	a	Write a short note on classification and properties of Fullerenes.	CO ₂	L1	5M
	b	Explain the applications of nano materials.	CO ₂	L2	5M
		UNIT-III			
6		Derive the Nernst equation for a single electrode potential and explain the terms	CO3	L2	10M
O		in equation and write its applications.			
edito:		OR			
7	a	Discuss about potentiometric sensors with examples.	CO4	L2	6 M
		Explain amperometric sensors with examples.	CO4	L2	4M
	U	UNIT-IV			
			CO5	L2	6M
8	a	What is functionality of monomer? Explain in detail	CO5	L2 L2	4M
	b	Write about Co-ordination or Ziegler-Natta polymerization.	COS		4171
		OR -	COF	т 2	51M
9	a	Describe the preparation, properties and uses of Bakelite.	CO5	L2	5M
	b	Write about synthesis, properties and applications of Poly Glycolic Acid.	CO5	L2	5M
		UNIT-V			
10	a	Explain various classifications of Chromatographic technique.	CO6	L2	5M
	b	Discuss the principle and applications of IR Spectroscopy.	CO6	L2	5M
	-	OR			
11	a	Sketch the Instrumentation of UV-Visible spectroscopy and explain its	CO6	L2	6M
	71	components.			
-	b	Write about the important applications of HPLC Chromatography.	CO6	L2	4M
		*** END ***			

O.P.	.Code: 23ME0302 R23 H.T.No.			
	SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: (AUTONOMOUS)	PUT	ГUR	
	B.Tech. I Year I Semester Supplementary Examinations August	-2025		
	ENGINEERING GRAPHICS			
	(Common to CSE, CSIT, ECE & EEE)			
Tim	e: 3 Hours	Max.	Mark	s: 70
	(Answer all the Questions $5 \times 14 = 70$ Marks)			
	UNIT-I			
1	Construct an ellipse, with distance of the focus from the directrix as 50 mm	CO1	L6	14M
	and eccentricity as 2/3. Also draw normal and tangent to the curve at a point		_,	
	40 mm from the directrix.			
	OR			
2	Construct a hypo cycloid of a circle of 50 mm diameter, which rolls inside	CO1	L6	14M
	another circle of 180 mm diameter for one revolution counterclockwise.			
	UNIT-II			
3	Draw the projections of the following points, keeping the distance between	CO2	L1	14M
	the projectors as 25mm on the same reference lines.			
	A – 20mm above HP and 30mm in front of VP			
	B – 20mm above HP and 30mm behind VP			
	C – 20mm below HP and 30mm behind VP			
	D – 20mm below HP and 30mm in front of VP			
	E – On HP and 30mm in front of VP			
	F – On VP and 20mm above HP			
	G – Lying on both HP and VP			
	OR			
4	A line NS 80mm long has its end N 10mm above HP and 15mm In front of	CO ₂	L3	14M
	VP. The other end S is 65mm above HP and 50mm in front of VP. Draw the			
	projections of the line and Find its true inclinations with HP & VP.			
	UNIT-III			
5	Draw the projections of a hexagonal prism of base side 25mm and axis	CO ₃	L6	14M
	60mm long, when it is resting on one of its corners of the base on H.P. The			
	axis of the solid is inclined at 450 to H.P.			
	OR			
6	A triangular prism of base side 30mm and axis 50mm long, is resting on H.P	CO ₃	L6	14M
	on one of its bases			
	i) perpendicular to V.P			
	ii) inclined 300 to V.P.			
	Draw its projections.			
	UNIT-IV			
7	A square pyramid of base 40 mm and axis 60 mm long, Its base lies on VP	CO4	L6	14M
	with its axis parallel to HP. A cut sectional plane, 600 to VP and bisect the			
	axis. Draw the projections sectional front view and true shape of the section.			
	OR			

O.P.Code: 23CE0101

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 BASIC CIVIL & MECHANICAL ENGINEERING

(Common to CE, MECH, CSM, CIC, CAD, CCC & CAI) Time: 3 Hours Max. Marks: 70 *Note: Answer PART-A from pages 2 to 20 and PART-B from 21 to 39. PART-A (CIVIL) (Answer all the Questions $5 \times 1 = 5$ Marks) List out various sources of water? CO₁ L1**1M** What is meant by traversing? CO₁ L1 **1M** What are the uses of contour mapping? CO₂ L1 **1M d** State the functions of Air Transport. CO₂ L₂ 1**M** e How impurities in water are classified? CO₃ L₁ 1M (Answer all Three Units $3 \times 10 = 30$ Marks) (CIVIL) UNIT-I 2 a Write a detailed report on Building Construction. CO₁ L3 **5M L2 b** Describe about Hydraulic Engineering. CO₁ 5M OR 3 a List out grades of cement and their uses. CO₁ L3 5M **b** What is cement concrete and what are the properties of cement concrete? CO₁ L1 **5M** UNIT-II a Convert Whole Circle Bearing (WCB) into Reduced Bearing (RB) CO₂ **L4 5M** i) 20°30' ii) 132°30' iii) 256°00' iv) 345°0' **b** Briefly explain the various methods of horizontal measurement. CO₂ L5 **5M** OR a Calculate the back bearing from observed fore bearing for the following CO₂ L₃ **5M** lines i) AB=55°34' ii) CD=159°53' iii) PQ=210°12' iv) RS=295°36' **b** What are the uses of surveying? CO₂ L1**5M** UNIT-III

6	a	Explain briefly about how dams are classified according to material use.	CO3	L2	5M
	b	What do you mean by Rainwater harvesting? and write its advantages.	CO3	L3	5M
		OR			

7	a Briefly discuss about different types of Harbour.	CO3 L6 6	M

b Enumerate different stages of Hydrological cycle. CO₃ L₃ **4M**

PART-B(MECHANICAL)

(Answer all the Questions $5 \times 1 = 5$ Marks)

1	f	How do you classify the metals?	CO1	L2	1M
	g	Write the applications of composite materials.	CO1	L1	1M
	h	How do you classify the heat engines?	CO2	L2	1M
	i	What is Hybrid Electric vehicle?	CO2	L1	1M
	j	How do you classify the power plants?	CO3	L2	1M
		(Answer all Three Units $3 \times 10 = 30$ Marks) (MECHANIC	CAL)		
		UNIT-IV			
8	a	List out various properties of the metals.	CO1	L1	5M
	b	Distinguish between ferrous and Nonferrous materials	CO1	L2	5M
		OR			
9	a	List out various important applications of smart materials.	CO1	L2	5M
	b	Discuss about the important properties of Nonferrous metals	CO1	L2	5M
		UNIT-V			
10	a	Illustrate the functions of Additive manufacturing.	CO2	L2	5M
	b	Differentiate between traditional Manufacturing and smart	CO2	L2	5M
		manufacturing.			
		OR			
11	a	Explain the working of simple vapour compression refrigeration	CO2	L1	5M
		System with a neat figure.			
	b	Distinguish between SI engines and CI engines.	CO2	L1	5M
		UNIT-VI			
12		Illustrate the working of steam power plant with a neat sketch.	CO3	L2	10M
		OR			
13	a	Differentiate between Belt drives, chain drives and gear drives.	CO3	L1	6M
	b		CO3	L2	4M

*** END ***

Q.P.Code: 23EE0201

Time: 3 Hours

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025 BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common to CSE, ECE, EEE & CSIT)

*Note	: A	nswer PART-A from pages 2 to 20 and PART-B from 21 to 39.	1/10011	-VICI	45. 70
		PART-A (ELECTRICAL)			
		(Answer all the Questions $5 \times 1 = 5$ Marks)			
1	a	What are the passive elements?	CO1	L1	1M
	b	State Kirchoff's laws.	CO1	L1	1 M
	c	Define Faradays law	CO2	L1	1 M
	d	What is the power rating of Air Conditioner and Fan?	CO3	L1	1 M
	e	Define unit of Electrical Energy.	CO3	L1	1M
		(Answer all Three Units $3 \times 10 = 30$ Marks) (ELECTRICA)	L)		
		UNIT-I			
2	a	Find equivalent resistance when three resisters are connected in parallel.	CO2	L3	5M
	b	Explain about Energy Sources. OR	CO4	L2	5M
3	a	What are the equations of AC Voltage and Current	CO2	L1	2M
	b	Define the following	CO2	L1	8M
		i)Waveform, ii) Time period, iii) frequency iv) Amplitude			
		UNIT-II			
4		Draw and explain the construction of dc machine.	CO2	L4	10M
		OR			
5		Explain construction and operating principle of Permanent Magnet	CO2	L2	10M
		Moving Coil (PMMC) instruments.			
		UNIT-III			
6		How does a nuclear plant work? Explain with neat sketch.	CO3	L3	10M
		OR			
7		Explain the calculation of electricity bill for domestic consumers.	CO3	L2	10M

Max. Marks: 70

PART-B(ELECTRONICS)

(Answer all the Questions $5 \times 1 = 5$ Marks)

1	f	What are conductors?	CO1	L1	1M
	g	Define doping.	CO1	L1	1M
	h	Define amplifier.	CO2	L1	1 M
	i	What is the necessary of the coupling capacitor?	CO2	L1	1M
	j	List the names of universal gates with symbols.	CO3	L1	1M
		(Answer all Three Units $3 \times 10 = 30$ Marks) (ELECTRONIC	CS)		
		UNIT-IV			
8		Explain the operation of pn junction diode under forward bias and reverse	CO1	L5	10M
		bias conditions with the help of V-I characteristics curve.			
		OR			
9		With a neat sketch Explain the input and output and current gain	CO2	L1	10M
		characteristics of a transistor in common base (CB) configuration.			
		UNIT-V			
10		Explain the Block diagram description of a dc power supply with a	CO2	L1	10M
		detailed explanation of all blocks.			
		OR			
11		What is a Voltage Regulator? How the Zener Diode works as a Voltage	CO2	L1	10M
		Regulator?			
		UNIT-VI			
12		Explain about Logic gates with symbols and truth table.	CO3	L5	10M
		OR			
13	a	Explain differences between combinational and sequential circuits	CO3	L4	6M
	b	Perform the following addition using excess-3 code i)386+756 ii)12+38	CO3	L4	4M

*** END ***

Q.P.Code: 23CS0501

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Supplementary Examinations August-2025
INTRODUCTION TO PROGRAMMING

	INTRODUCTION TO PROGRAMMING			
	(Common to All)	Max. M	arks	: 70
Time	e: 3 Hours			
	(Answer all the Questions $10 \times 2 = 200$ Marks)			
1	The different flows about symbols	CO1	L1	2M
1	t t t	CO1	L1	2M
	Guy the grantour for nested if else statement.	CO ₂	L1	2M
	1 1tory of for I con	CO ₂	L2	2M
	D. C 2D amorr	CO ₃	L1	2M
	e Define 2D array.f List the different string handling function.	CO3	L1	2M
	To the best to assign an address to pointer variable.	CO ₄	L2	2M
	GARAGERE TAK D. DEPOSITE STATE TO THE CONTROL OF TH	CO6	L4	2M
	the fraction and list the different types of function.	CO ₅	L1	2M
	- a a 11.1 C	CO5	L1	2M
	j Define Call-by-reference. PART-B			
	(Answer all Five Units $5 \times 10 = 50$ Marks)			
	UNIT-I			
	0.7	CO1	L1	5M
2	a Define algorithm. Explain the characteristics of an algorithm.	CO1	L3	5M
	b Design an algorithm for finding an average of three numbers.	COI	LJ	01,1
	OR	CO1	L4	5M
3	a State the difference between Time complexity and Space Complexity.	CO1	L6	5M
	b Compose a C program for to perform all the arithmetic operations.	COI	110	0112
	UNIT-II	G00	τ.	534
-4	a Develop a C Program to find whether the given number is even or odd	CO2	L6	5M
	b Create a C Program to find the greatest of three numbers using nested in	f CO2	L6	5M
	else statement.			
	OR			~ » «
5	a Describe the looping statements below with an example	CO ₂	L2	5M
	i. While Loop ii. Do-while loop iii. For loop.		~ /	53. 4
	b Compose a C program to print the following series	CO ₂	L6	5M
	1			
	2 2			
	3 3 3			
	4 4 4 4			
157	UNIT-III			
	To Dimensional array with example	CO2	L2	5N
6	b Compose a C program for Transpose of a given matrix.	CO2	L6	5N
-	b Compose a C program for Transpose of a given management of the Compose of the C			
	a de court the vervels consonants special symbols ar	id CO3	3 L6	6N
7				
	space in a given string. b Create a C program to perform the following string library function	on CO3	1 L6	4N
	b Create a C program to periorin the following string results			
	strlen(), strcpy(), strcat(), strcmp().			

	UNIT-IV			
a	Explain the concept of array of pointers with examples	CO4	L2	6M
b	What are the features of pointers? Write a C program to print address of a variable.	CO4	L1	4M
	OR			
a	Illustrate the use of type def with suitable example.	CO4	L2	5M
b	Explain about Enumerated data type. UNIT-V	CO4	L2	5M
a	Explain the library functions available in C.	CO5	L2	5M
b	Discuss in detail how communication is established among functions in C	CO5		5M

OR

CO6

L1

5M-

b Explain, read () and write () operation with examples.

*** END ***

a List the different file operations in C with their definition and syntax.

10

language?

